
Reflectance imaging at superficial depths in
strongly scattering media

Arnold D. Kim

UC Merced Applied Math

Collaborators: Pedro González-Rodríguez, Boaz Ilan, Miguel Moscoso, and

Chrysoula Tsogka

This work is supported by AFOSR (FA9550-17-1-0238)

and NSF (DMS-1331109)



Motivation

Ï Imaging in multiple scattering media is important for several
different applications, e.g. biomedical optics, geophysical
remote sensing through clouds, fog, rain, the ocean, etc.

Ï Strong multiple scattering causes image blurring and makes
the inverse problem severely ill-posed.

Ï There are important problems involving reflectance imaging
and spectroscopy at superficial depths, e.g. site-specific
screening of pre-cancer in epithelial tissues.

Ï Another way to think of this problem is near-field imaging in
strongly scattering media.



Imaging problem
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Modeling roadmap



Radiative transfer theory

Ï Developed in the early 20th century to describe light
scattering by planetary atmospheres.

Ï It takes into account scattering and absorption by
inhomogeneities.

Ï This theory assumes no phase coherence in its description of
power transport (addition of power).

Ï The specific intensity I(Ω,r, t) quantifies the power flowing in
direction Ω, at position r, and at time t.



The radiative transfer equation (RTE)

c−1∂tI +Ω ·∇I +µaI +µs

[
I −

∫
S2

f (Ω ·Ω′)I(Ω′,r)dΩ′
]

︸ ︷︷ ︸
LI

= 0.

Ï c is the speed of light in the background

Ï µa is the absorption coefficient

Ï µs is the scattering coefficient

Ï f is the scattering phase function



Scattering phase function
The scattering phase function f gives the fraction of light scattered
in direction Ω due to light incident in direction Ω′.

The scattering phase function is normalized according to∫
S2

f (Ω ·Ω′)dΩ′ = 1.

We introduce the anisotropy factor, g, defined as∫
S2

f (Ω ·Ω′)Ω ·Ω′dΩ′ = g.



Boundary conditions
To solve

c−1∂tI +Ω ·∇I +µaI +µsLI = 0

in a domain D with boundary ∂D, we prescribe boundary
conditions of the form

I = Ib on Γin = {(Ω,r, t) ∈ S2 ×∂D× (0,T ],Ω ·ν< 0}.

In other words, we must prescribe the light “going into” the medium
from the boundary.



Initial-boundary value problem for the RTE
Let D = {z > 0} with ∂D = {z = 0}. Our model for the imaging problem
is

c−1∂tI +Ω ·∇I +µaI +µsLI = 0 in S2 ×D× (0,T ],

I|z=0 = δ(Ω− ẑ)b(x,y)p(t) on Γin = {S2 ×∂D× (0,T ],Ω · ẑ > 0}

I|t=0 = 0 on S2 ×D

I → 0 as z →∞.

Ï The boundary condition prescribes a pulsed beam incident
normally on the boundary plane, z = 0.

Ï There is no other source of light in the problem.

Ï Backscattered light corresponds to I|z=0 for directions
satisfying Ω · ẑ < 0.



Measurements
Measurements of backscattered light take the form:

R(x,y, t) =−
∫

NA
I(Ω,x,y,0, t)Ω · ẑdΩ,

with NA⊂ {Ω · ẑ < 0} denoting the numerical aperture of the
detector.

Suppose we measure two or more NAs so that we can recover

I−0 = 1p
2π

∫
Ω·ẑ<0

I(Ω,x,y,0, t)dΩ

and

I−1 =−
√

3

2π

∫
Ω·ẑ<0

I(Ω,x,y,0, t)Ω · ẑdΩ.

We take I−0 and I−1 as our measurements.



RTE with angularly averaged measurements

Ï The angularly averaged measurements remove useful
direction information from backscattered light, e.g. direction
dependence of the source.

Ï Solving the full RTE is unnecessarily complicated for this
problem if we only measure I−0 and I−1 .

Ï Using only these measurements makes the inverse problem
for the RTE underdetermined.

Ï The key is to develop the simplest model for measurements
that accurately captures the key features of angularly
averaged measurements of backscattered light.



Diffusion approximation of the RTE
The diffusion approximation assumes that scattering is so strong
that

I(Ω,r, t) ∼ U(r, t)+Ω · [κ∇U(r, t)],

where U satisfies

c−1Ut +µaU −∇· (κ∇U) = 0.

Because U +Ω · (κ∇U) is unable to satisfy boundary condition,

I|z=0 = δ(Ω− ẑ)p(t) on Γin,

we must introduce an approximate boundary condition.

This approximate boundary condition causes errors that make the
diffusion approximation unsuitable near sources and boundaries*.

*Rohde and Kim (2012)



Making the diffusion approximation work
S.-H. Tseng and A. J. Durkin† developed a method to circumvent
the problem with using the diffusion approximation.

This innovation was used for a fiber-based probe for diffuse optical
spectroscopy in epithelial tissues.

†S.-H. Tseng et al (2005) [with permission]



Correcting the diffusion approximation

Ï The diffusion approximation is a significant simplification over
the RTE.

Ï It is not wrong for this problem. Light that penetrates deep into
the strongly scattering medium is diffusive.

Ï It is just not sophisticated enough.

Ï We could consider the inverse problem for the RTE, but that
will require more work than is worthwhile.

Ï How can we construct a better model?



Double-spherical harmonics method
Since

Ï Boundary condition prescribes light on {Ω · ẑ > 0},
Ï Measurements are integrals over {Ω · ẑ < 0},

we write

I±(Ω,r, t) = I(±Ω,r, t), Ω ∈ S2
+ = {Ω · ẑ > 0},

and seek both I± as expansions in spherical harmonics, {Ỹnm},
mapped to the hemisphere, S2+:

I± =
∞∑

n=0

n∑
m=−n

Ỹnm(Ω)Inm(r, t), Ω ∈ S2
+.

By truncating these expansions at n = N , we obtain the
double-spherical harmonics approximation of order N (DPN ).



The DP1 approximation
The simplest approximation is DP1:

I± =
3∑

n=0
Φn(µ,ϕ)I±n (r, t),

Φ0 = 1/
p

2π, Φ1 =
p

3/2π(2µ−1),

Φ2 =
p

3/2π
√

1−µ2 cosϕ, Φ3 =
p

3/2π
√

1−µ2 sinϕ.

Here, µ= cosθ denote the cosine of the polar angle, and ϕ denote
the azimuthal angle.

Note that I−0 |z=0 and I−1 |z=0 are the measurements.

Φ2,3 used here are a slight modification to those typically used in
the DP1 approximation.



The DP1 system

Substituting I± =
3∑

n=0
Φn(µ,ϕ)I±n (r, t), into the RTE and projecting

onto the finite dimensional subspace, we obtain‡

[
I+

I−
]

t

+
[

A 0
0 −A

][
I+

I−
]

z

+
[

B 0
0 B

][
I+

I−
]

x

+
[

C 0
0 C

][
I+

I−
]

y

+µa

[
I+

I−
]
+µs

([
I+

I−
]
−

[
S1 S2

S2 S1

][
I+

I−
])

= 0,

where I± = (I±0 , I±1 , I±2 , I±3 ).

The entries of A, B, and C are known explicitly.

S1 and S2 are projections of the scattering phase function onto the
finite dimensional subspace. Those are computed numerically.

‡Sandoval and Kim (2015)



Solving the DP1 system

Ï The DP1 system is a highly structured, finite dimensional
system of forward-backward advection equations.

Ï It is much simpler problem to solve than the RTE.

Ï It directly models the measurements.

Ï Provided it is accurate, its use for imaging problems is novel
and interesting.

Ï Even if it is not accurate, it provides the structure of how
information is contained in measurements.



Validating the DP1 approximation
Numerical results for µs = 100, µa = 0.01, and g = 0.8.
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The RTE uses a δ(Ω− ẑ) source, and the DP1 approximation uses
the projection of this source onto the finite dimensional basis.

DP1 has errors at short times (not shown here), but it still
accurately captures the qualitative behavior of backscattered light.



Strong scattering limit
We introduce 0 < ε¿ 1 and write µa = εα and µs = ε−1σ. We also
introduce the slow time τ= εt so that the DP1 system is

ε

[
I+

I−
]
τ

+
[

A 0
0 −A

][
I+

I−
]

z

+
[

B 0
0 B

][
I+

I−
]

x

+
[

C 0
0 C

][
I+

I−
]

y

+εα
[

I+

I−
]
+ε−1σ

([
I+

I−
]
−

[
S1 S2

S2 S1

][
I+

I−
])

= 0,

The solution is given as the sum§

[
I+

I−
]
=

[
I+int
I−int

]
+

[
I+bl
I−bl

]
,

with I±int denoting the interior solution and I±bl denoting the boundary
layer solution.

§Larsen and Keller (1973)



Interior solution
We find that[

I+int
I−int

]
=

[
ê1

ê1

]
(ρ0 +ερ1)

− ε

σ(1−g)

{[
a1

−a1

]
∂zρ0 +

[
b1

b1

]
∂xρ0 +

[
c1

c1

]
∂yρ0

}
+O(ε2),

with ê1 = (1,0,0,0), a1 = Aê1, b1 = Bê1, and c1 = Cê1.

The scalar functions, ρ1,2, satisfy

∂τρi +αρi −∇·
(

1

3σ(1−g)
∇ρi

)
= 0, i = 1,2.

We determine that ρ0|τ=0 = ρ1|τ=0 = 0, but we cannot determine
boundary conditions at z = 0.



Boundary layer solution
We introduce the stretched variable, z = εZ. The leading order
behavior of the boundary layer solution satisfies[

A 0
0 −A

][
v+

v−
]

Z

+σ
[
I−S1 −S2

−S2 I−S1

][
v+

v−
]
= 0, in Z > 0

subject to boundary condition

v+|Z=0 = I+b(x,y)p(t)− ê1(ρ0 +ερ1)+ε 1

σ(1−g)
a1∂zρ0,

and asymptotic matching condition[
v+

v−
]
→ 0, Z →∞.

This boundary layer solution only depends on x, y, and t
parametrically.



Model for measurements
By requiring asymptotic matching, we find that

ρ0|z=0 =α0b(x,y)p(t), ρ1|z=0 =α1
1

σ(1−g)
∂zρ0|z=0.

From these and solving the boundary layer problem, we find that

I−0 |z=0 ∼β0b(x,y)p(t)+εβ1(κ∂zρ0)|z=0,

and
I−1 |z=0 ∼ γ0b(x,y)p(t)+εγ1(κ∂zρ0)|z=0.

Here, b(x,y)p(t) is the known source and ∂zρ0 is computed from
the diffusion approximation.



Interpreting the model

Ï In this model, only (κ∂zρ0)|z=0 contains any information about
the obstacles.

Ï The boundary layer problem suggests the following.

Ï We can directly image in cross-range by scanning.

Ï We can isolate the range recovery as a 1D inverse problem for
the diffusion approximation.

Ï This reduced model effectively teaches us how to properly
apply the diffusion approximation for this imaging problem.

Ï We obtain the same results for the full RTE in the strong
scattering limit¶.

¶Rohde and Kim (2017)



Imaging at superficial depths
The results suggest that we can image at superficial depths by
scanning along cross-range, and reconstructing along range.

The image reconstruction problem becomes finding κ given
measurements [κ(x0,0)∂zρ]|z=0 with ρ satisfying

ρτ+αρ−∂z[κ(x0,z)∂zρ] = 0,

ρ|τ=0 = 0, ρ|z=0 =α0b(x0)p(t).



Direct imaging in cross-range



Preliminary range reconstruction results
We use a simple L2-based inversion method for the following test
case.



Preliminary range reconstruction results
We use a simple L2-based inversion method for the following test
case.

The results are promising, and we are seeking better methods to
solve this 1D inverse problem.



Conclusions

Ï We developed a systematic model for backscattered light
measurements using the DP1 approximation of the RTE.

Ï The results state that the measurements are linear
combinations of the incident pulsed beam, b(x,y)p(t), and the
Dirichlet-to-Neumann map of the diffusion equation.

Ï Boundary layer analysis suggest that imaging at superficial
depths only requires direct imaging in cross-range and a 1D
reconstruction in range.

Ï Preliminary results show that this is an efficient method for
imaging superficial targets in strongly scattering media.


